The ArchiveAsync
stores all evaluated points and performance scores in a rush::Rush data base.
S3 Methods
as.data.table(archive)
ArchiveAsync ->data.table::data.table()
Returns a tabular view of all performed function calls of the Objective. Thex_domain
column is unnested to separate columns.
Super class
bbotk::Archive
-> ArchiveAsync
Active bindings
data
(data.table::data.table)
Data table with all finished points.queued_data
(data.table::data.table)
Data table with all queued points.running_data
(data.table::data.table)
Data table with all running points.finished_data
(data.table::data.table)
Data table with all finished points.failed_data
(data.table::data.table)
Data table with all failed points.n_queued
(
integer(1)
)
Number of queued points.n_running
(
integer(1)
)
Number of running points.n_finished
(
integer(1)
)
Number of finished points.n_failed
(
integer(1)
)
Number of failed points.n_evals
(
integer(1)
)
Number of evaluations stored in the archive.
Methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
ArchiveAsync$new(search_space, codomain, check_values = FALSE, rush)
Arguments
search_space
(paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a subset of thedomain
of the Objective or it describes a set of parameters together with atrafo
function that transforms values from the search space to values of the domain. Depending on the context, this value defaults to the domain of the objective.codomain
(paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter" define whether it should be minimized or maximized. The default is to minimize each component.check_values
(
logical(1)
)
Should points before the evaluation and the results be checked for validity?rush
(
Rush
)
If a rush instance is supplied, the tuning runs without batches.
Method push_points()
Push queued points to the archive.
Arguments
xss
(list of named
list()
)
List of named lists of point values.
Method push_running_point()
Push running point to the archive.
Arguments
xs
(named
list
)
Named list of point values.extra
(
list()
)
Named list of additional information.
Method push_result()
Push result to the archive.
Arguments
key
(
character()
)
Key of the point.ys
(
list()
)
Named list of results.x_domain
(
list()
)
Named list of transformed point values.extra
(
list()
)
Named list of additional information.
Method push_failed_point()
Push failed point to the archive.
Arguments
key
(
character()
)
Key of the point.message
(
character()
)
Error message.
Method data_with_state()
Fetch points with a specific state.
Arguments
fields
(
character()
)
Fields to fetch. Defaults toc("xs", "ys", "xs_extra", "worker_extra", "ys_extra")
.states
(
character()
)
States of the tasks to be fetched. Defaults toc("queued", "running", "finished", "failed")
.reset_cache
(
logical(1)
)
Whether to reset the cache of the finished points.
Method best()
Returns the best scoring evaluation(s). For single-crit optimization, the solution that minimizes / maximizes the objective function. For multi-crit optimization, the Pareto set / front.
Arguments
n_select
(
integer(1L)
)
Amount of points to select. Ignored for multi-crit optimization.ties_method
(
character(1L)
)
Method to break ties when multiple points have the same score. Either"first"
(default) or"random"
. Ignored for multi-crit optimization. Ifn_select > 1L
, the tie method is ignored and the first point is returned.
Method nds_selection()
Calculate best points w.r.t. non dominated sorting with hypervolume contribution.
Arguments
n_select
(
integer(1L)
)
Amount of points to select.ref_point
(
numeric()
)
Reference point for hypervolume.