Skip to contents

OptimizerBatchRandomSearch class that implements a simple Random Search.

In order to support general termination criteria and parallelization, we evaluate points in a batch-fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a more fine-grained checking of termination criteria.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Machine Learning Research, 13(10), 281–305. https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar function opt():

mlr_optimizers$get("random_search")
opt("random_search")

Parameters

batch_size

integer(1)
Maximum number of points to try in a batch.

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Simply wrap the function in progressr::with_progress() to enable them. We recommend to use package progress as backend; enable with progressr::handlers("progress").

Super classes

bbotk::Optimizer -> bbotk::OptimizerBatch -> OptimizerBatchRandomSearch

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

OptimizerBatchRandomSearch$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

search_space = domain = ps(x = p_dbl(lower = -1, upper = 1))

codomain = ps(y = p_dbl(tags = "minimize"))

objective_function = function(xs) {
  list(y = as.numeric(xs)^2)
}

objective = ObjectiveRFun$new(
 fun = objective_function,
 domain = domain,
 codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
 objective = objective,
 search_space = search_space,
 terminator = trm("evals", n_evals = 10))


optimizer = opt("random_search")

# modifies the instance by reference
optimizer$optimize(instance)
#>             x  x_domain          y
#>         <num>    <list>      <num>
#> 1: -0.1100163 <list[1]> 0.01210359

# returns best scoring evaluation
instance$result
#>             x  x_domain          y
#>         <num>    <list>      <num>
#> 1: -0.1100163 <list[1]> 0.01210359

# allows access of data.table of full path of all evaluations
as.data.table(instance$archive$data)
#>              x          y  x_domain           timestamp batch_nr
#>          <num>      <num>    <list>              <POSc>    <int>
#>  1: -0.6058181 0.36701552 <list[1]> 2024-12-18 10:05:14        1
#>  2:  0.8535221 0.72849993 <list[1]> 2024-12-18 10:05:14        2
#>  3: -0.5029088 0.25291723 <list[1]> 2024-12-18 10:05:14        3
#>  4:  0.6683794 0.44673099 <list[1]> 2024-12-18 10:05:14        4
#>  5:  0.2044075 0.04178244 <list[1]> 2024-12-18 10:05:14        5
#>  6:  0.6311834 0.39839248 <list[1]> 2024-12-18 10:05:14        6
#>  7: -0.1100163 0.01210359 <list[1]> 2024-12-18 10:05:14        7
#>  8:  0.3430470 0.11768123 <list[1]> 2024-12-18 10:05:14        8
#>  9:  0.4713843 0.22220315 <list[1]> 2024-12-18 10:05:14        9
#> 10:  0.6360771 0.40459405 <list[1]> 2024-12-18 10:05:14       10