OptimizerBatchNLoptr
class that implements non-linear optimization.
Calls nloptr::nloptr()
from package nloptr.
Source
Johnson, G S (2020). “The NLopt nonlinear-optimization package.” https://github.com/stevengj/nlopt.
Parameters
algorithm
character(1)
eval_g_ineq
function()
xtol_rel
numeric(1)
xtol_abs
numeric(1)
ftol_rel
numeric(1)
ftol_abs
numeric(1)
start_values
character(1)
Create"random"
start values or based on"center"
of search space? In the latter case, it is the center of the parameters before a trafo is applied. If set to"custom"
, the start values can be passed via thestart
parameter.start
numeric()
Custom start values. Only applicable ifstart_values
parameter is set to"custom"
.approximate_eval_grad_f
logical(1)
Should gradients be numerically approximated via finite differences (nloptr::nl.grad). Only required for certain algorithms. Note that function evaluations required for the numerical gradient approximation will be logged as usual and are not treated differently than regular function evaluations by, e.g., Terminators.
For the meaning of the control parameters, see nloptr::nloptr()
and
nloptr::nloptr.print.options()
.
The termination conditions stopval
, maxtime
and maxeval
of
nloptr::nloptr()
are deactivated and replaced by the Terminator
subclasses. The x and function value tolerance termination conditions
(xtol_rel = 10^-4
, xtol_abs = rep(0.0, length(x0))
, ftol_rel = 0.0
and
ftol_abs = 0.0
) are still available and implemented with their package
defaults. To deactivate these conditions, set them to -1
.
Progress Bars
$optimize()
supports progress bars via the package progressr
combined with a Terminator. Simply wrap the function in
progressr::with_progress()
to enable them. We recommend to use package
progress as backend; enable with progressr::handlers("progress")
.
Super classes
bbotk::Optimizer
-> bbotk::OptimizerBatch
-> OptimizerBatchNLoptr
Examples
# \donttest{
if (requireNamespace("nloptr")) {
search_space = domain = ps(x = p_dbl(lower = -1, upper = 1))
codomain = ps(y = p_dbl(tags = "minimize"))
objective_function = function(xs) {
list(y = as.numeric(xs)^2)
}
objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,
codomain = codomain)
# We use the internal termination criterion xtol_rel
terminator = trm("none")
instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = terminator)
optimizer = opt("nloptr", algorithm = "NLOPT_LN_BOBYQA")
# Modifies the instance by reference
optimizer$optimize(instance)
# Returns best scoring evaluation
instance$result
# Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)
}
#> x y timestamp batch_nr x_domain_x
#> <num> <num> <POSc> <int> <num>
#> 1: 0.04727466 0.002234893 2025-05-30 08:00:34 1 0.04727466
#> 2: 0.04727466 0.002234893 2025-05-30 08:00:34 2 0.04727466
#> 3: 0.04727466 0.002234893 2025-05-30 08:00:34 3 0.04727466
#> 4: 0.54727466 0.299509549 2025-05-30 08:00:34 4 0.54727466
#> 5: -0.45272534 0.204960237 2025-05-30 08:00:34 5 -0.45272534
#> 6: 0.00000000 0.000000000 2025-05-30 08:00:34 6 0.00000000
#> 7: 0.05000000 0.002500000 2025-05-30 08:00:34 7 0.05000000
#> 8: -0.00500000 0.000025000 2025-05-30 08:00:34 8 -0.00500000
#> 9: 0.00050000 0.000000250 2025-05-30 08:00:34 9 0.00050000
#> 10: -0.00050000 0.000000250 2025-05-30 08:00:34 10 -0.00050000
#> 11: 0.00000000 0.000000000 2025-05-30 08:00:34 11 0.00000000
# }