OptimizerBatchGenSA class that implements generalized simulated annealing.
Calls GenSA::GenSA() from package GenSA.
Source
Tsallis C, Stariolo DA (1996). “Generalized simulated annealing.” Physica A: Statistical Mechanics and its Applications, 233(1-2), 395–406. doi:10.1016/s0378-4371(96)00271-3 .
Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Global Optimization: The GenSA Package.” The R Journal, 5(1), 13. doi:10.32614/rj-2013-002 .
Dictionary
This Optimizer can be instantiated via the dictionary
mlr_optimizers or with the associated sugar function opt():
Parameters
parnumeric()
Initial parameter values. Default isNULL, in which case, default values will be generated automatically.start_valuescharacter(1)
Create"random"start values or based on"center"of search space? In the latter case, it is the center of the parameters before a trafo is applied. By default,nloptrwill generate start values automatically. Custom start values can be passed via theparparameter.
For the meaning of the control parameters, see GenSA::GenSA().
Note that GenSA::GenSA() uses smooth = TRUE as a default.
In the case of using this optimizer for Hyperparameter Optimization you may want to set smooth = FALSE.
Internal Termination Parameters
The algorithm can terminated with all Terminators. Additionally, the following internal termination parameters can be used:
maxitinteger(1)
Maximum number of iterations. Original default is5000. Overwritten with.Machine$integer.max.threshold.stopnumeric(1)
Threshold stop. Deactivated withNULL. Default isNULL.nb.stop.improvementinteger(1)
Number of stop improvement. Deactivated with-1L. Default is-1L.max.callinteger(1)
Maximum number of calls. Original default is1e7. Overwritten with.Machine$integer.max.max.timeinteger(1)
Maximum time. Deactivate withNULL. Default isNULL.
Progress Bars
$optimize() supports progress bars via the package progressr
combined with a Terminator. Simply wrap the function in
progressr::with_progress() to enable them. We recommend to use package
progress as backend; enable with progressr::handlers("progress").
Super classes
bbotk::Optimizer -> bbotk::OptimizerBatch -> OptimizerBatchGenSA
Examples
# example only runs if GenSA is available
if (mlr3misc::require_namespaces("GenSA", quietly = TRUE)) {
# define the objective function
fun = function(xs) {
list(y = - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10)
}
# set domain
domain = ps(
x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)
)
# set codomain
codomain = ps(
y = p_dbl(tags = "maximize")
)
# create objective
objective = ObjectiveRFun$new(
fun = fun,
domain = domain,
codomain = codomain,
properties = "deterministic"
)
# initialize instance
instance = oi(
objective = objective,
terminator = trm("evals", n_evals = 20)
)
# load optimizer
optimizer = opt("gensa")
# trigger optimization
optimizer$optimize(instance)
# all evaluated configurations
instance$archive
# best performing configuration
instance$result
}
#> x1 x2 x_domain y
#> <num> <num> <list> <num>
#> 1: 1.998884 -2.998197 <list[2]> 9.999996