Multi Criteria Optimization Instance for Asynchronous Optimization
Source:R/OptimInstanceAsyncMultiCrit.R
OptimInstanceAsyncMultiCrit.RdThe OptimInstanceAsyncMultiCrit specifies an optimization problem for an OptimizerAsync.
The function oi_async() creates an OptimInstanceAsyncMultiCrit.
Super classes
bbotk::OptimInstance -> bbotk::OptimInstanceAsync -> OptimInstanceAsyncMultiCrit
Active bindings
result_x_domain(
list())
(transformed) x part of the result in the domain space of the objective.result_y(
numeric(1))
Optimal outcome.
Methods
Method new()
Creates a new instance of this R6 class.
Usage
OptimInstanceAsyncMultiCrit$new(
objective,
search_space = NULL,
terminator,
check_values = FALSE,
callbacks = NULL,
archive = NULL,
rush = NULL
)Arguments
objective(Objective)
Objective function.search_space(paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a subset of thedomainof the Objective or it describes a set of parameters together with atrafofunction that transforms values from the search space to values of the domain. Depending on the context, this value defaults to the domain of the objective.terminatorTerminator
Termination criterion.check_values(
logical(1))
Should points before the evaluation and the results be checked for validity?callbacks(list of mlr3misc::Callback)
List of callbacks.archive(Archive).
rush(
Rush)
If a rush instance is supplied, the tuning runs without batches.
Method assign_result()
The OptimizerAsync writes the best found points and estimated performance values here (probably the Pareto set / front). For internal use.
Arguments
xdt(
data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g.data.table(x1 = c(1, 3), x2 = c(2, 4)). Column names have to match ids of thesearch_space. However,xdtcan contain additional columns.ydt(
numeric(1))
Optimal outcomes, e.g. the Pareto front.extra(
data.table::data.table())
Additional information....(
any)
ignored.
Examples
# example only runs if a Redis server is available
if (mlr3misc::require_namespaces(c("rush", "redux", "mirai"), quietly = TRUE) &&
redux::redis_available()) {
# define the objective function
fun = function(xs) {
data.table(
y1 = xs$x1^2 + xs$x2^2,
y2 = (xs$x1 - 2)^2 + (xs$x2 - 1)^2
)
}
# set domain
domain = ps(
x1 = p_dbl(-5, 5),
x2 = p_dbl(-5, 5)
)
# set codomain
codomain = ps(
y1 = p_dbl(tags = "minimize"),
y2 = p_dbl(tags = "minimize")
)
# create objective
objective = ObjectiveRFun$new(
fun = fun,
domain = domain,
codomain = codomain,
properties = "deterministic"
)
# start workers
rush::rush_plan(worker_type = "remote")
mirai::daemons(1)
# initialize instance
instance = oi_async(
objective = objective,
terminator = trm("evals", n_evals = 100))
}